Справочник функций

Ваш аккаунт

Войти через: 
Забыли пароль?
Регистрация
Информацию о новых материалах можно получать и без регистрации:

Почтовая рассылка

Подписчиков: -1
Последний выпуск: 19.06.2015

Data mining

Что такое Data Mining?

В.ДК, А.Самойленко. Data Mining

Data Mining переводится как "добыча" или "раскопка данных". Нередко рядом с Data Mining встречаются слова "обнаружение знаний в базах данных".

В целом технологию Data Mining достаточно точно определяет Григорий Пиатецкий-Шапиро - один из основателей этого направления. Data Mining - это процесс обнаружения в сырых данных ранее не известных, нетривиальных, практически полезных, доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности.

Классы систем и методов Data Mining

В.ДК, А.Самойленко. Data Mining

  1. Предметно-ориентированные аналитические системы.

    Наиболее широкий подкласс таких систем, получивший распространение в области исследования финансовых рынков, носит название "технический анализ". Он представляет собой совокупность нескольких десятков методов прогноза динамики цен и выбора оптимальной структуры инвестиционного портфеля, основанных на различных эмпирических моделях динамики рынка. Эти методы часто используют несложный статистический аппарат, но максимально учитывают сложившуюся в своей области специфику (профессиональный язык, системы различных индексов и пр.).

  2. Статистические пакеты.

    Последние версии почти всех известных статистических пакетов включают наряду с традиционными статистическими методами также элементы Data Mining. Но основное внимание в них уделяется всё же классическим методикам - корреляционному, регрессионному, факторному анализу и др.

  3. Нейронные сети.

    Это большей класс систем, архитектура которых имеет аналогию (как теперь известно, довольно слабую) с построением нервной ткани из нейронов. В одной из наиболее распространенных архитектур, многослойном персептроне с обратным распространением ошибки, имитируется работа нейронов в составе иерархической сети, где каждый нейрон более высокого уровня соединен входами с выходами нейронов нижележащего уровня. На нейроны самого нижнего слоя подаются значения входных параметров, на основе которых нужно принимать какие-то решения, прогнозировать развитие ситуации и т.д. Эти значения рассматриваются как сигналы, передающиеся в следующий слой, ослабляясь или усиливаясь в зависимости от числовых значений (весов), приписываемых межнейронным связям. В результате на выходе нейрона самого верхнего слоя вырабатывается некоторое значение, которое рассматривается как ответ - реакция всей сети на введенные значения входных параметров. Для того чтобы сеть можно было применять в дальнейшем, её прежде надо "натренировать" на полученных ранее данных, для которых известны и значения входных параметров, и правильные ответы на них. Тренировка состоит в подборе весов межнейронных связей.

    Основным недостатком нейросетевой парадигмы является необходимость иметь очень большой объем обучающей выборки. Другой существенный недостаток заключается в том, что даже натренированная нейронная сеть представляет собой "черный ящик". Знания, зафиксированные как веса нескольких сотен межнейронных связей, совершенно не поддаются анализу и интерпретации человеком (известные попытки дать интерпретацию структуре нейронной сети выглядят неубедительными - система "KINOsuite-PR").

  4. Системы рассуждений на основе аналогичных случаев.

    Идея систем case based reasoning - CBR - на первый взгляд крайне проста. Для того чтобы сделать прогноз на будущее или выбрать правильное решение, эти системы находят в прошлом близкие аналоги наличной ситуации и выбирают тот же ответ, который был для них правильным.

    Главным минусом этих систем считают то, что они вообще не создают каких-либо моделей или правил, обобщающих предыдущий опыт, - в выборе решения они основываются на всем массиве доступных исторических данных, поэтому невозможно сказать на основе каких конкретно факторов CBR-системы строят свои ответы.

  5. Деревья решений.

    Деревья решений (decision trees) являются одним из наиболее популярных подходов к решению задач Data Mining. Они создают иерархическую структуру классифицирующих правил типа "ЕСЛИ... ТО..." (if-then), имеющую вид дерева. Для принятия решения, к какому классу отнести некоторый объект или ситуацию, требуется ответить на вопросы, стоящие в узлах этого дерева, начиная с его корня. Вопросы имеют вид "значение параметра A больше x?". Если ответ положительный, то осуществляется переход к правому узлу следующего уровня, если отрицательный - к левому узлу; затем снова следует вопрос, связанный с соответствующим узлом.

    Популярность подхода связана как бы с наглядностью и понятностью. Но деревья решений принципиально не способны находить "лучшие" (наиболее полные и точные) правила в данных. Они реализуют наивный принцип последовательного просмотра признаков и "цепляют" фактически осколки настоящих закономерностей, создавая лишь иллюзию логического вывода.

  6. Генетические алгоритмы.

    Data Mining не основная область применения генетических алгоритмов. Их нужно рассматривать скорее как мощное средство решения разнообразных комбинаторных задач и задач оптимизации. Тем не менее, генетические алгоритмы вошли сейчас в стандартный инструментарий методов Data Mining.

    Первый шаг при построении генетических алгоритмов - это кодировка исходных логических закономерностей в базе данных, которые именуют хромосомами, а весь набор таких закономерностей называют популяцией хромосом. Далее для реализации концепции отбора вводится способ сопоставления различных хромосом. Популяция обрабатывается с помощью процедур репродукции, изменчивости (мутации), генетической композиции. Эти процедуры имитируют биологические процессы.

  7. Алгоритмы ограниченного перебора.

    Эти алгоритмы вычисляют частоты комбинаций простых логических событий в подгруппах данных. Примеры простых логических событий: X=a, X<a, X>a, a<X<b и др., где X - какой либо параметр, a и b - константы. Ограничением служит длина комбинации простых логических событий. На основании анализа вычисленных частот делается заключение о полезности той или иной комбинации для установления ассоциации в данных, для классификации, прогнозирования и т.п.


Назад | Оглавление | Далее

Оставить комментарий

Комментарий:
можно использовать BB-коды
Максимальная длина комментария - 4000 символов.
 

Комментарии

1.
83K
29 мая 2012 года
Smokycat
0 / / 29.05.2012
Мне нравитсяМне не нравится
29 мая 2012, 01:37:11
В результате использования Data Mining решается задача сегментации клиентов на основе их прибыльности. Анализ выделяет те сегменты покупателей, которые приносят наибольшую прибыль. Сегментация также может осуществляться на основе лояльности клиентов. В результате сегментации вся клиентская база будет поделена на определенные сегменты, с общими характеристиками. В соответствии с этими характеристиками компания может индивидуально подбирать маркетинговую политику для каждой группы клиентов.

Также можно использовать технологию Data Mining для прогнозирования реакции определенного сегмента клиентов на определенный вид рекламы или рекламных акций — на основе ретроспективных данных, накопленных в предыдущие периоды.
Реклама на сайте | Обмен ссылками | Ссылки | Экспорт (RSS) | Контакты
Добавить статью | Добавить исходник | Добавить хостинг-провайдера | Добавить сайт в каталог